
ACRF to ALCF:
Threads in computational chemistry

Robert J. Harrison

Institute for Advanced Computational Science
Stony Brook University

and

Center for Scientific Computing
Brookhaven National Laboratory

robert.harrison@stonybrook.edu

Formative years - 1988-92

• Theoretical Chemistry Group – TCG
– Thom, Ray, Al, Ron, Larry, ...
– VAX
– FPS
– Alliant FX/8 and 2800
– Ardent (Dana), Stellar, Stardent
– (Apple Macintosh)

• Parallelization of COLUMBUS
– ANL, Ohio, Vienna

ACRF Influences

• Machines
– Alliant, Encore, Sequent Symmetry, BBN Butterfly

• Programming concepts and tools
– PARMACS

• Emphasis on portability
• Emphasis on performance modeling
• Energy and enthusiasm

Parallel tools and programming
• TCGMSG

– Bare bones message passing library
– Directly inspired by PARMACS and in response to

need for production quality software
– Robust, portable, high-performance
– Everyone complained about the name

• One-sided messaging for full-CI on Intel Delta
– RPC / active messages
– Managing distributed data structures; atomic update
– Moving computation to data rather than v.v.

A happy pair programming
memory with Rusty

• Porting TCGMSG to two Alliants connected
via HIPPI
– Vaguely recall processes actively sucking data

from the NIC with clients communicating via
buffers in shared memory

– Clearly recall learning a lot and being so
impressed at his clarity of thought, geniality, and
generosity.

Training a new generation

• The successful ACRF training sessions
inspired TCG to run several schools on
parallel computing in chemistry
– Many familiar names were students
– Windus
– Bernholdt
– Janssen
– Colvin
– ...

Molecular Science Software Project

Gary Black,
Brett Didier,
Todd Elsenthagen,
Sue Havre,
Carina Lansing,
Bruce Palmer,
Karen Schuchardt,
Lisong Sun
Erich Vorpagel

PNNL
Yuri Alexeev,
Eric Bylaska,
Bert deJong,
Mahin Hackler,
Karol Kowalski,
Lisa Pollack,
Tjerk Straatsma,
Marat Valiev,
Edo Apra

ISU and Ames
Theresa Windus

SBU & BNL
Robert Harrison

(Jarek Nieplocha), Manoj Krishnan,
Bruce Palmer, Daniel Chavarría,
Sriram Krishnamoorthy

http://www.nwchem-sw.org

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

History and Design

• Prototyping at very start of NWChem project
– Model full application not just kernel
– 80-20 rule – more like 90-10 rule

• Global Arrays designed to solve a problem
– Distributing large data structures while supporting

irregular computation
– Entire HF code
– First 2 attempts (Linda-like) worked for kernel but

not the rest of the code

9

Global Arrays (technologies)

• Shared-memory-like model
– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...

• Used by most major chemistry codes,
financial futures forecasting,
astrophysics, computer graphics, ...

• One of the legacies of
Jarek Nieplocha, PNNLSingle, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/

10

SC94

11

local memory

Non-uniform memory access model of
computation

Shared Object Shared Object

 c
op

y
to

 s
ha

re
d

ob
je

ct

local memorylocal memory

compute/update

1-sided
communication

1-sided
communication

Fock matrix in a nutshell

()

1 1 2 2 1 2
12

1
(|) () () () ()

|

g r g r g r g r dr dr
r

D F

D F

D F

D F

D F

D F

µ ν σ λ

µν µν

µσ µσ

µλ µλ

νσ νσ

νλ νλ

σλ σλ

µν σλ

µν σλ

∞

−∞

=

 ⊗ ⇒

∫

1 integral contributes to 6 Fock Matrix elements

F i j=∑
k l

(2(i j∣k l)−(i k∣ j l)) D k l

• Sparsity, variable
integral costs,
algorithm constraints,
symmetry,
shell blocking, ...

Distributed data SCF
• First success for NWChem and Global Arrays

do tiles of i
 do tiles of j
 do tiles of k
 do tiles of l
 get patches ij, ik, il, jk, jl, kl
 compute integrals
 accumulate results back into patches

t comm=O(B2
) tcompute=O (B4

)
tcompute

t comm

=O(B2
)

B = block size

Mini-apps used to
evaluate HPCS
languages Chapel,
X10, Fortress
 - just the data flow

Parallel loop nest

Dµνmy_next_task = SharedCounter(chunksize)

do i=1,max_i

if(i.eq.my_next_task) then

call ga_get()

(do work)

call ga_acc()

my_next_task = SharedCounter(chunksize)

endif

enddo

Barrier()

Dynamic load balancing and NUMA

Fρσ

Dynamic load balancing

Higher-performance code

• Looks nothing like that!
• Sort shell pairs to evaluate in similar batches

– Precomputation, vectorization – 10-fold speedup
– Big increase in complexity and memory use

• Integral evaluation code – 100K lines!
• Careful screening with rigorous inequalities

– Robustness, minimize overhead

Highest-performance code

• Looks nothing like that!
• Strives for near linear scaling
• Coulomb interaction

– Mix of FMM, FFT, and other fast methods
– (near) linear scaling with system size

• Exchange interaction
– Heavy screening and physical thresholding

• And this is just 1% of NWChem functionality

17

The Tensor Contraction Engine:
A Tool for Quantum Chemistry

Oak Ridge National
Laboratory

David E. Bernholdt,
Venkatesh Choppella, Robert
Harrison

Pacific Northwest National
Laboratory

So Hirata

Louisiana State University
J Ramanujam,

Ohio State University
Gerald Baumgartner, Alina
Bibireata, Daniel Cociorva,
Xiaoyang Gao, Sriram
Krishnamoorthy, Sandhya
Krishnan, Chi-Chung Lam,
Quingda Lu, Russell M.
Pitzer, P Sadayappan,
Alexander Sibiryakov

University of Waterloo
Marcel Nooijen, Alexander
Auer

Research at ORNL supported by the Laboratory Directed Research and Development Program. Research at PNNL supported by the Office of Basic Energy
Sciences, U. S. Dept. of Energy. Research at OSU, Waterloo, and LSU supported by the National Science Foundation Information Technology Research Program

http://www.cis.ohio-state.edu/~gb/TCE/

Tensor Contraction Engine (TCE)
(Kowalski, PNNL)

Highly parallel codes are needed in order to
apply the CC theories to larger molecular
systems

Symbolic algebra systems for coding
complicated tensor expressions: Tensor
Contraction Engine (TCE)

Triples part of CR-EOMCCSD(T)
for P1B1-f-coronene in
Ahlrichs-VTZ basis (786 functions).
Timings on Jaguar Cray-XT5
computer at ORNL.

Parallel performance
(Karwolski et al., PNNL)

Towards future computer
architectures
(Villa,Krishnamoorthy, Kowalski)

 sp
e
e
d

u
p

The CCSD(T)/Reg-CCSD(T) codes have been rewritten in
order to take advantage of GPGPU accelerators
Preliminary tests show very good scalability of the most
expensive N7 part of the CCSD(T) approach

Multiresolution Adaptive Numerical
Scientific Simulation

George I. Fann1, Diego Galindo1, Robert J. Harrison3,
Scott Thornton2, Judy Hill1, and Jun Jia1

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

3Stony Brook University, Brookhaven National Laboratory

In collaboration with

Gregory Beylkin4, Lucas Monzon4, Hideo Sekino5
and Edward Valeev6

4University of Colorado
5Toyohashi Technical University, Japan

6Virginia Tech

robert.harrison@gmail.com

MADNESS 2009 23

Ariana Beste

Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill

George Fann

Matt Reuter

Alvaro Vasquez

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

Jeff Hammond

Nichols Romero

Jia, Kato, Calvin, Pei, ...

Big picture
• Want robust algorithms that scale correctly with

system size and are easy to write
• Robust, accurate, fast computation

– Gaussian basis sets: high accuracy yields dense
matrices and linear dependence – O(N3)

– Plane waves: force pseudo-potentials – O(N3)

– O(N logmN logkε) is possible, guaranteed ε

• Semantic gap
– Why are our equations just O(100) lines but programs

O(1M) lines?

• Facile path from laptop to exaflop

What is MADNESS?

• A general purpose numerical environment for
reliable and fast scientific simulation
– Chemistry, nuclear physics, atomic physics, material

science, nanoscience, climate, fusion, ...

• A general purpose parallel programming
environment designed for the peta/exa-scales

• Addresses many of the sources of complexity that
constrain our HPC ambitions

http://code.google.com/p/m-a-d-n-e-s-s
http://harrison2.chem.utk.edu/~rjh/madness/

Numerics

Parallel Runtime

Applications

E.g., with guaranteed precision of 1e-6 form a
numerical representation of a Gaussian in the

cube [-20,20]3, solve Poisson’s equation, and plot
the resulting potential

(all running in parallel with threads+MPI)

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.

output: norm of f 1.00000000e+00 energy 3.98920526e-01

Compose directly in terms of
functions and operators

This is a Latex rendering of a
program to solve the Hartree-Fock
equations for the helium atom

The compiler also outputs a C++
code that can be compiled without
modification and run in parallel

He atom
Hartree-Fock

“Fast” algorithms
• Fast in mathematical sense

– Optimal scaling of cost with accuracy & size

• Multigrid method – Brandt (1977)
– Iterative solution of differential equations
– Analyzes solution/error at different length scales

• Fast multipole method – Greengard, Rokhlin
(1987)
– Fast application of dense operators
– Exploits smoothness of operators

• Multiresolution analysis
– Exploits smoothness of operators and functions

The math behind the MADNESS

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯ V n−V n−1

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l
 xiO

∥ f i
l ∥2=1 l0

A=∑
=1

r

u v
TO

0 v
T v=u

T u=

Integral Operator Formulation
• Solving the integral equation

– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner

()
()

()

()

21
2

12

2

2 2

2 *

* () () in 3D ; 2
4

k r s

V E

E V

G V

e
G f r ds f s k E

r sπ

−

− −

− ∇ + Ψ = Ψ

Ψ = − −∇ − Ψ

= − Ψ

= = −
−∫

Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.

32

Separated form for integral operators

• Approach
– Represent the kernel over a finite range as a sum of products

of 1-D operators (often, not always, Gaussian)

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms slowly being implemented

T∗ f =∫ ds K r−s f s

r i i ' , j j ' , k k '
n , l− l '

=∑
=0

M

X i i '
n , lx− l ' x Y j j '

n , l y− l ' y Z k k '
n , l z−l ' zO

Analytic forms for separated
representations

 Seeking representation of form

 f (r)=∑
μ

cμ e
−tμ r 2

 If the function is homogeneous
 f (λ r)=λ k f (r)

then both ce−t r 2

 and λk c e−tλ2 r2

should occur,
suggesting the expansion is of the form
 f (r)=c∑

μ
αμ k e−tα 2 μr 2

James N. Lyness, ANL/MCS

At this point I immediately thought “thanks James”
because he taught me a related technique in quadrature.

34

Accurate Quadratures

• Trapezoidal quadrature
– Geometric precision for

periodic functions with
sufficient smoothness

• Beylkin & Monzon
– Further reductions

The kernel for x=1e-4,1e-3,1e-2,1e-,1e0.

The curve for x=1e-4 is the rightmost

e−μ r

r
=

2
√π∫

0

∞

e−x 2 t2
−μ

2
/4 t 2

dt

=
2
√π ∫

−∞

∞

e− x2 e2 s−μ 2 e−2 s /4+ s ds

= ∑
μ=1

M

cμ e t μ x 2

+O (e−αM)

Molecular Electronic Structure
Energy and
gradients

ECPs coming
(Sekino, Kato)

Response
properties
(Vasquez and
Sekino)

Still not as
functional as
previous
Python version

Spin density
of solvated
electron

Solid-state electronic structure

• Thornton, Eguiluz and Harrison
(UT/ORNL)
– NSF OCI-0904972: Computational

chemistry and physics beyond the
petascale

• Full band structure with LDA and
HF for periodic systems

• In development: hybrid functionals,
response theory, post-DFT methods
such as GW and model many-body
Hamiltonians via Wannier functions

Coulomb potential isosurface in LiF

ALCF: Romero, Vasquez

Nuclear physics

J. Pei, G.I. Fann, W. Thornton
W. Nazarewicz
UT/ORNL

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Rusty's back again in leading the math/CS part of the NUCLEI project

Nanoscale photonics
(Reuter, Northwestern; Hill, Harrison ORNL)

Diffuse domain approximation for interior boundary value problem; long-wavelength Maxwell equations;
Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap – 107 difference between
shortest and longest length scales.

IBM BGQ Team• ALCF
– Alvaro Vasquez
– Jeff Hammond
– Nichols Romero

• OSU
– Kevin Stocks

• SBU
– Robert Harrison

• UTK
– Scott Thornton

• ORNL
– George Fann

BGQ Early Science Project
Activities

• We are testing a new linear-response module to
solve TDDFT equations.

• Molecular properties (dipole polarizabilities, NMR
chemical shifting, etc.)

• Support for well known pseudopotentials (e.g.,
Krack, Goedecker,etc.)

• Speedup of Hartree-Fock exchange evaluations via
screening parameters.

• Implementation of new DFT functionals.

• Improving parallel scalability for current
supercomputer architectures.

Computational kernels

• Discontinuous spectral element
– In each “box” a tensor product of coefficients
– Most operations are small matrix-multiplication

E.g., in 3D

– Typical matrix dimensions are 2 to 30
– E.g., (16,400)T * (16,20)

r i ' j ' k '=∑
i j k

si j k c i i ' c j j ' c k k '=∑
k (∑j (∑i si j k c i i ')c j j ')ck k '

⇒ r=((sT c)T c)T c

MtXM performance on BGQ

0 10 20 30 40 50 60
1

10

100

(n,n)*(n,n) small matrix multiply various thread coun ts

1

2

4

8

16

32

64

n

g
flo

p
/s

0 5 10 15 20 25 30
0.1

1

10

100

transform(n,n,n) various thread counts

1

2

4

8

16

32

64

n

g
flo

p
/s

Kevin Stocks OSU

64 threads, best performance is
139.7 GFLOPS (trans(400,20,20))
 * Theoretical peak is 204.8
 * Linpack is approx. 166.3
(scaling top500 results to one node)

Benefit of tuned mTxm
in BG/P Performance

T
im

e
/s

N CPUs

Molecular system with 13 heavy atoms, DFT, k=8, one iteration
Strong scaling

44

Summary
● Exascale programming models

– Resilience, Power, Performance, Productivity
– Productivity is arguably the most important
– Enable innovation and discovery at scale

• MADNESS and NWChem
– Frameworks – places for disciplines to meet to leverage

investments and expertise
– Face different challenges in moving forward

• Data and computation are inseparable challenges

Time
dependent
electronic
structure

Vence,
Krstic,

Harrison
UT/ORNL

H
2

+ molecule

in laser field
(fixed nuclei)

The eletric field repeatedly rips
the electron out ~300 Bohr and
brings it back to rescatter off
the nucleus.

Electron correlation (6D)
• All defects in mean-field model are ascribed to

electron correlation
• Singularities in Hamiltonian imply for a two-electron atom

• Include the inter-electron distance in the wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically improvable, and (until
recently) not computationally feasible for many-electron systems

• Configuration interaction expansion – slowly convergent

r1

r2

r12

 r1, r2, r1 2=1
1
2

r12⋯ as r120

 r1, r2, r1 2=exp −r1r21a r1 2⋯

 r1, r2,=∑
i

c i∣1
 i
r12

i
 r2∣

x

y

 |x-y|

 |x-y| x-y

 |x-y|

 y-x

 |x-y|

 |x-y|

 |x-y|

 |x-y|

 y-x

 x-y

 y-x

 x-y

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagonal
r = O(-log ε)

r = separation rank

∣x− y∣=∑
=1

r

f x g y
Partitioned SVD representation

Why a new runtime?
• MADNESS computation is irregular & dynamic

– 1000s of dynamically-refined meshes changing
frequently & independently (to guarantee precision)

• Because we wanted to make MADNESS itself
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays,

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI-3, DOE projects in fault

tolerance, ...

Key runtime elements

• Futures for hiding latency and automating
dependency management

• Global names and name spaces

• Non-process centric computing
– One-sided messaging between objects
– Retain place=process for MPI/GA legacy

compatibility

• Dynamic load balancing
– Data redistribution, work stealing,

randomization

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs,

C++0x

● Hide latency due
to communication
or computation

●

● Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

Virtualization of data and tasks
Future:
 MPI rank
 probe()
 set()
 get()

Future Compress(tree):
Future left = Compress(tree.left)
Future right = Compress(tree.right)
return Task(Op, left, right)

Compress(tree)
Wait for all tasks to complete

Task:
 Input parameters
 Output parameters
 probe()
 run()
 get()

Benefits: Communication latency & transfer time largely hidden
 Much simpler composition than explicit message passing
 Positions code to use “intelligent” runtimes with work stealing
 Positions code for efficient use of multi-core chips
 Locality-aware and/or graph-based scheduling

Global Names

● Objects with global
names with different
state in each process
– C.f. shared[threads]

in UPC; co-Array

● Non-collective
constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>
{

int f(int);
};
ProcessID p;
A a;
Future<int> b =

a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

Global Namespaces
● Specialize global names

to containers
– Hash table done
– Arrays, etc., planned

● Replace global pointer
(process+local pointer)
with more powerful
concept

●

● User definable map from
keys to “owner” process

class Index; // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert(i,v);
Future<double> r =

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

Why MADNESS?

• Reduces S/W complexity
– MATLAB-like level of composition of scientific

problems with guaranteed speed and precision
– Programmer not responsible for managing

dependencies, scheduling, or placement

• Reduces numerical complexity
– Solution of integral not differential equations
– Framework makes latest techniques in applied math

and physics available to wide audience

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware
algorithms and scheduling

Three equivalent representations
• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• Rapid compression/reconstruction

• Values at Gauss-Legendre points in each box

• Use appropriate basis for a given operation

'1 1 2 1 1
0 0
0 0

0 ' 0 0 0

() () ()
nk n k

n n n
i i il il

i n l i

f x s x d xφ ψ
− − − −

′ ′

= = = =

= +∑ ∑ ∑ ∑

2 1 1

0 0

() ()
n k

n n n
il il

l i

f x s xφ
− −

= =

= ∑∑

Please forget about wavelets
• They are not central
• Wavelets are a convenient basis for spanning

Vn-Vn-1 and understanding its properties

• But you don’t actually need to use them
– MADNESS does still compute wavelet coefficients, but

Beylkin’s new code does not

• Please remember this …
– Discontinuous spectral element with multi-resolution

and separated representations for fast computation with
guaranteed precision in many dimensions.

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks more scalable; also ported to BGQ

Runtime Objectives
● Scalability to 1+M processors ASAP

● Runtime responsible for
● scheduling and placement,
● managing dependencies & hiding latency

● Compatible with existing models (MPI, GA)

● Borrow successful concepts from Cilk,
Charm++, Python, HPCS languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Global Arrays
	Slide 10
	Slide 11
	The SCF Algorithm in a Nutshell
	Slide 13
	Dynamic load balancing
	Slide 15
	Slide 16
	The Tensor Contraction Engine: A Tool for Quantum Chemistry
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Multiresolution Adaptive Numerical Scientific Simulation
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Integral Formulation
	Separated form for integral operators
	Slide 33
	Accurate Quadratures
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Performance in BG/P
	Slide 44
	Slide 45
	Slide 46
	Electron correlation
	Slide 48
	Slide 49
	Key elements
	Futures
	Virtualization of data and tasks
	Global Names
	Global Namespaces
	Slide 55
	Slide 56
	Two equivalent representations
	Please forget about wavelets
	Runtime Objectives

